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Abstract
We study the decay of a prepared state into non-flat continuum. We find
that the survival probability P(t) might exhibit either stretched-exponential
or power-law decay, depending on non-universal features of the model. Still
there is a universal characteristic time t0 that does not depend on the functional
form. It is only for a flat continuum that we get a robust exponential decay
that is insensitive to the nature of the intra-continuum couplings. The analysis
highlights the co-existence of perturbative and non-perturbative features in the
local density of states, and the nonlinear dependence of 1/t0 on the strength of
the coupling.

PACS numbers: 03.65.−w, 03.65.Sq, 05.45.Mt, 73.23.−b

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The time relaxation of a quantum-mechanical prepared state into a continuum, due to some
residual interaction, is of great interest in many fields of physics. Applications can be found in
areas as diverse as nuclear [1], atomic and molecular physics [2] to quantum information [3],
solid-state physics [4, 5] and quantum chaos [6]. The most fundamental measure characterizing
the time relaxation process is the so-called survival probability P(t), defined as the probability
not to decay before time t.

The study of P(t) goes back to the work of Weisskopf and Wigner [7] regarding the decay
of a bound state into a flat continuum. They have found that P(t) follows an exponential
decay P(t) = exp(−t/t0), with a rate 1/t0 which is given by the Fermi golden rule (FGR),
and hence proportional to the effective density of states (DOS) for ω = 0 (energy conserving)
transitions.

Following Wigner, many studies have adopted random matrix theory (RMT) modeling
[8, 9] for the investigation of P(t), highlighting the importance of the statistical properties of
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the spectrum [10]. Notably in the context of a many-particle system, one should understand the
role of the whole hierarchy of states and associated couplings, ranging from the single-particle
levels to the exponentially dense spectrum of complicated many-particle excitations [11], e.g.
leading to a decay P(t) ∼ exp(−√

t). Non-uniform couplings also emerge upon quantization
of chaotic systems where non-universal (semiclassical) features dictate the band-structure of
the perturbation, leading to a highly nonlinear energy spreading [12].

1.1. Motivation

Despite all the mounting interest in physical circumstances with complex energy landscape, a
theoretical investigation of the time relaxation for prototypical RMT models is still missing,
and also the general (not model specific) perspectives are lacking. A reasonable starting
point for an RMT modeling is the characterization of the physical system of interest by
a spectral function C̃(ω) that describes the power spectrum of its fluctuations (the exact
definition is given in the next section). For idealized strongly chaotic systems this power
spectrum looks ‘flat’, or using an optional terminology taken from different context it is called
‘white’ or ‘Ohmic’. But in more realistic circumstances C̃(ω) is not flat (see some examples in
[12, 15]), and one wonders what are the consequences. Of particular interest are circumstances
in which for small frequencies C̃(ω) ∝ ωs−1 with s < 1 (‘sub-Ohmic’ spectral function) or
s > 1 (‘super-Ohmic’ spectral function). For such extreme non-flatness the conventional
Wigner–Weisskopf-FGR picture is not applicable, giving zero or infinite rate of decay
respectively. For this reason the decay into an s �= 1 continuum is the most interesting
and challenging case for analysis.

1.2. Scope

In this paper, we explore a general class of prototype models where the initial state decays
into a non-flat (sub-Ohmic or super-Ohmic) continuum. We show that the survival probability
P(t) = g(t/t0) is characterized by a generalized Wigner decay time t0 that depends in a
nonlinear way on the strength of the coupling. We also establish that the scaling function g has
distinct universal and non-universal features. It is only for the flat continuum of the traditional
Wigner model, that we have a robust exponential decay that is insensitive to the nature of
the intra-continuum couplings. In addition to P(t), we investigate other characteristics of the
evolving wavepacket, namely the variance �Esprd(t) and the 50% probability width �Ecore(t)

of the energy distribution, that describe universal and non-universal features of its decaying
component.

2. Modeling

We analyze two models whose dynamics is generated by an RMT Hamiltonian H = H0 + V ,
with H0 = diag{En} and n ∈ Z. The first one is the Friedrichs model (FM) [13], where the
distinguished energy level E0 is coupled to the rest of the levels En�=0 by a rank two matrix.
The second one is the generalized Wigner model (WM) [14], where the perturbation V does
not discriminate between the levels, and is given by a banded random matrix. In both cases
the system is prepared initially in the eigenstate corresponding to E0, and the coupling to the
other levels is characterized by the spectral function

C̃(ω) = −Im〈E0|V (E0 + ω − H̃0 + i0)−1V |E0〉
=

∑
n�=0

|Vn,0|22πδ(ω − (En − E0)), (1)
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where H̃0 is obtained from H0 by removing the 0th row and column. An RMT averaging over
realizations is implicit in the WM case.

Given a physical system the spectral function C̃(ω) can be determined numerically (see
some examples in [12, 15]) and its various features can be understood analytically by analyzing
the skeleton which is formed by periodic orbits, bouncing orbits and taking into account the
Lyapunov instability of the motion. In this paper we would like to consider the most dramatic
possibility of having a non-Ohmic spectral function which is conventionally modeled as

C̃(ω) = 2πε2|ω|s−1 e−|ω|/ωc . (2)

The cutoff frequency ωc defines the bandwidth b = �ωc of Vnm, where � is the density of
states. In the FM case ±b is the furthest reachable state (because n �= 0 states are not coupled),
and therefore the size of the matrix is effectively N = b + 1.

The assumed form (2) for the spectral function C̃(ω) constitutes the natural generalization
of the standard FM and WM. By integrating equation (2) over ω we see that the perturbation V
is bounded provided s > 0. The s = 1 case is what we refer to as the flat continuum (Ohmic
case), for which it is well known that both models leads to the same exponential decay for the
survival probability. For s > 2, the effect of the continuum can be handled using first-order
perturbation theory. We focus in the 0 < s < 2 regime and consider the s �= 1 case for which
a nonlinear version of the Wigner decay problem is encountered.

In the numerical simulations we integrate the Schrödinger equation for cn(t) = 〈n|ψ(t)〉
starting with the initial condition cn = δn,0 at t = 0. We use units such that � = h̄ = 1, and
consider a sharp bandwidth b. The integration is done using a self-expanding algorithm [17].
The spreading profile is described by the distribution Pt(n) = |cn(t)|2, where the averaging is
over realizations of the Hamiltonian. The survival probability is P(t) = Pt(0). The energy
spreading is characterized by the standard deviation �Esprd(t) = [∑

n(En − E0)
2Pt(n)

]1/2
,

by the median E50% = E0, and also by the E25% and E75% percentiles. The width of the core
component is defined as �Ecore(t) = E75% − E25%.

3. Time scales

A dimensional analysis predicts the existence of 3 relevant time scales: the Heisenberg time tH
which is related to the density of states �; the semiclassical (correlation) time which is related
to the bandwidth ωc; and the generalized Wigner times t0 which is related to the perturbation
strength:

tH = 2π�, tc = 2π/ωc (3)

t0 =
(

2πε2

Γ(3 − s) sin(sπ/2)

)−1/(2−s)

≡ 1

γ0
(4)

where Γ is the Gamma function. The numerical prefactor that we have incorporated into the
definition in equation (4) will be explained later in section 7. We shall refer to �−1 and to ωc

as the infrared and ultraviolate cutoffs of the theory. Our main interest is in the continuum
limit. Assuming further that ωc is irrelevant, one expects a decay that is determined by the
generalized Wigner time t0.

It should be clear that the existence of a cutoff free universal theory in the continuum limit
for s �= 1 is not self evident. In fact the natural expectation might be to have either infrared or
ultraviolate cutoff dependence. Indeed we find that the 2nd moment of the spreading depends
on the ωc cutoff, while t0 is reflected in the FM case but not in the WM case. But as far as
P(t) is concerned, we find that a one-parameter cutoff free universal theory exists.
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Figure 1. LDoS for the FM and for the WM via direct diagonalization of 1600 × 1600 matrices
with s = 1.5 and ε = 1.44. Upper panel: the log–log scale emphasizes the universality of the tails
up to ωc . Lower panel: the log–linear scale emphasizes the difference in the non-universal core
component.

4. The LDoS

Before analyzing the dynamics, it is important to understand the behavior of the Local Density
of States (LDoS) [14], which is defined as follows:

ρ(ω) =
∑

ν

|〈ν|0〉|2δ(ω − (Eν − E0)) (5)

where |ν〉 are the eigenstates of the full Hamiltonian H. An RMT averaging over realizations
is implied in the WM case. Once the LDoS is computed, we can use it to calculate the survival
probability:

P(t) ≡ |〈0| e−iHt |0〉|2 = |FT[2πρ(ω)]|2, (6)

where FT denotes the Fourier transform. For flat band profile (s = 1), the LDoS
ρ(ω) = (1/γ0)f (ω/γ0) is a Lorentzian f (x) = (1/π)/(1 + x2) [14], leading to a Wigner
exponential decay for P(t). For (s �= 1), the ensuing analysis shows that ρ(ω) has a core-tail
structure [12, 16, 17]. Namely, it consists of two distinct regions x 
 1 and x < 1 that reflect
universal and non-universal features of the problem, respectively. The tails x 
 1 can be
calculated using first-order perturbation theory leading to f (x) ∝ 1/x3−s . This component
we regard as universal. The core (x < 1) reflects the non-perturbative mixing of the levels,
and it is non-universal. In the WM case we argue that for x � 1 it is semicircle-like, while for
FM we have a singular behavior f (x) ∼ x1−s . These findings are supported by the numerical
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Figure 2. The survival probability P(t) for the FM (top) and for the WM (bottom). The
time is scaled with respect to t0. For all curves in the main panels � = 1 and s = 1.5.
The WM simulations are presented in log–log scale in order to contrast it with the FM
results. Inset: further analysis displaying Y = − ln[P(t)]/t versus X = t in a log–log
plot for representative runs with (s, ε) = black(0.30, 4.43), red(1.00, 3.24), green(1.25, 1.14),
blue(1.50, 1.09), yellow(1.75, 0.50), showing that the decay in the WM case is described by a
stretched exponential. The red bold dashed line has zero slope, corresponding to simple exponential
decay for s = 1.

calculations of figure 1, and are reflected in the behavior of P(t) as confirmed by the numerical
simulations of figure 2.

5. Friedrichs model

Using the Schur complement technique, we can calculate analytically the LDoS for the FM.
The Green’s function is G00(ω) = {[ω − �(ω)] + i(�(ω)/2)}−1 with the standard notations
�(ω) = C̃(ω),

�(ω) = –
∫ +∞

−∞

C̃(ω′)
ω − ω′

dω′

2π

= ε2π cot(sπ/2)|ω|s−1sin(ω). (7)
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In the last line we performed the limit ωc → ∞ (with the limiting expression converging in
distribution). The LDoS of equation (5) is −(1/π)Im[G00(ω)] leading to

ρ(ω) = 1

π

�(ω)/2

(ω − �(ω))2 + (�(ω)/2)2
. (8)

6. Wigner model

The analysis of the LDoS for the WM can be carried out approximately using a combination
of heuristic and formal methods. Our numerical results reported in figure 1 confirm that the
LDoS has first-order tails |Vn,0/(En − E0)|2 that co-exist with the core (non-perturbative)
component. We can determine the border γ0 between the core and the tail simply from the
requirement p0 ∼ 1 where

p0 =
∫ ∞

γ0

C̃(ω)

ω2

dω

2π
. (9)

For s > 2 we would have for sufficiently small coupling p0 � 1 even if we took the limit
γ0 → 0. This means that first-order perturbation theory is valid as a global approximation.
But for s < 2 the above equation implies breakdown of first-order perturbation theory at
γ0 ∼ ε2/(2−s). In the tails H0 dominates over V, while in the core V dominates. Therefore,
as far as the core in concerned, it makes sense to diagonalize V with an effective cutoff γ0.
Following [18], the result for the LDoS lineshape should be semicircle-like, with width given
by the expression

�Esc =
[∫ γ0

0
C̃(ω)

dω

2π

]1/2

, (10)

where above we use the effective bandwidth γ0, which replaces the actual bandwidth ωc (the
latter would be appropriate as in [18] if we were considering the WM without the diagonal
energies). The outcome of the integral is �Esc ∼ γ0, demonstrating that our procedure is self-
consistent; the core has the same width as implied by the breakdown of first-order perturbation
theory. We note that within this perspective the s = 1 Lorentzian is regarded as composed of
a semicircle-like core and first-order tails.

7. The survival probability

In the WM case the function ρ(ω) is smooth with power-law tails ∼1/ω1+α where α = 2 − s.
Thanks to the smoothness the FT does not have power-law tails but is exponential-like. The
similarity with the α-stable Levy distribution suggests that P(t) would be similar to a stretched
exponential,

P(t) ≈ exp[−(t/t0)
2−s]. (11)

The expression for t0 in equation (4) is implied by the observation that 1/|ω|1+α tails are FT
associated with a discontinuity −C|t |α , where C = [2Γ(1 + α) sin(απ/2)]−1.

In the FM case we observe that the function ρ(ω) in equation (8) features a crossover from
ω1−s for |ω| � γ0 to �(ω)/ω2 for |ω| 
 γ0. Thus, compared with the WM case, the FT has
an additional contribution from the singularity at ω = 0, and consequently by the Tauberian
theorem [19], the survival amplitude has a non-exponential decay, that for sufficiently long
time is described by a power law:

P(t) =
∣∣∣∣ 2 sin((s − 1)π)

(2 − s)π (t/t0)2−s

∣∣∣∣2

. (12)

6
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Figure 3. Lower inset: examples for the time evolution of �Ecore for s = 1.5 and b = 800 in the
WM case. Main panel: the extracted departure time versus the extracted inverse saturation value.
This scatter diagram demonstrates the validity of one parameter scaling. Upper inset: the extracted
departure time versus the perturbation strength ε. The theoretical (dashed) lines are based on the
t0 estimate of equation (4). The deviations of the departure time from the theoretical expectation
diminish in the limit ωc → ∞. ◦ corresponds to b = 400, � to b = 800, and � to b = 1600.

The long time behavior is dominated by the non-smooth feature of the core, and not by the tails.
Comparing the exponential and the power law we can find the expression for the crossover
time t ′0 that becomes t ′0 ∼ [log |s − 1|]1/(2−s)t0 
 t0 close to the Ohmic limit (s ∼ 1). For
s = 1 only the exponential decay survives. We emphasize that the cutoff-independent behavior
appears only after a short transient, i.e. for t > tc. For completeness we note that for the FM
with s = 2 we get P(t) ≈ | log(t/t ′c)|2, that holds for tc < t < t ′c where t ′c = tce1/(2ε2). For
s > 2 there is an immediate but only partial decay that saturates at the value P(t) = |1 − p0|2
for t > tc.

8. Spreading

The distinction between the core and tail components becomes physically transparent once
we analyze the time-dependent energy spreading of the wavepacket. Using the same time-
dependent analysis as in the s = 1 case of [17], it is straightforward to show that the rise
of �Ecore(t) is at t ∼ t0, and its saturation value is ∼γ0. Thus, �Ecore should exhibit one
parameter scaling with respect to t0. In figure 3 we present the results of the numerical analysis.
Our data indicate that the expected one-parameter scaling is obeyed. We have verified that
the slight deviation (shown in the inset) from the expected ε dependence is an artifact due to
having finite (rather then infinite) bandwidth in the numerical simulation.

The physics of �Esprd is quite different and not necessarily universal, because the second
moment is dominated by the tails, and hence likely to depend on the cutoff ωc and diverge in
the limit ωc → ∞. Indeed in the WM case we can use the linear response theory (LRT) result
of [12, 17]:

�Esprd(t) = [2(C(0) − C(t))]1/2, (13)

7
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where C(t) is the inverse FT of C̃(ω). This gives the saturated value
(
2ωs

cε
2
/
s
)1/2

as soon
as t > tc. We now turn to the FM case. The solution of the Schrödinger equation for cn(t) is
well known [2], and (setting E0 = 0) can be expressed using the real amplitude c(t) ≡ c0(t).
In particular P(t) = |c(t)|2 and also the energy spreading can be computed in a closed form,
with the end result

�Esprd(t) = [(1 + c2(t))C(0) − ċ(t)2 + 2c(t)c̈(t)]1/2. (14)

For t < t0 we can use the estimates c(t) ≈ 1 and ċ(t) ≈ 0 and c̈(t) ≈ −C(t) to conclude that
�Esprd(t) behaves as in equation (13). But for t > t0 we get

�Esprd(t) ≈ [(1 + P(t))C(0)]1/2, (15)

leading to a saturation value smaller by factor
√

2, reflecting the non-stationary decay
of the fluctuations as a function of time. More interestingly equation (14) contains a
cutoff-independent term that reflects the universal time scale t0. The numerical results in
figure 4 confirm the validity of the above expressions. We note that in the FM case the effect
of recurrences is more pronounced, because they are better synchronized; all the out-in-out
traffic goes exclusively through the initial state.

9. Summary and discussion

In this work we have compared two models that have the same spectral properties, but still
different underlying dynamics. One of them has an integrable dynamics (FM) while the other
is an RMT type (WM). This is complementary to our previous work [20] where we have
contrasted a physical model with its RMT counterpart.

8
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Non-Ohmic coupling to the continuum emerges in various frameworks in physics. The
general WM analysis might be motivated by the study of quantized chaotic systems that exhibit
non-Ohmic fluctuations due to semi-classically implied long time power-law correlations. In
fact typical power spectra are in general not like ‘white noise’ (e.g. [12, 16, 20]). The
general FM analysis might be motivated by studies of bound states that are embedded in
the continuum as in the single-level Fano–Anderson model, with diverse realizations in the
molecular/atomic/electronic context and also with implication regarding photonic lattices:
see [21] and further references therein.

It should be clear that by considering two special models, we do not cover the full range
of possibilities: in realistic circumstances the perturbation might have any rank, and there
might be non-trivial correlations between off-diagonal elements (which was in fact the case in
[20]). Still our results, since they relate to two extreme limiting models (FM, WM), serve to
illuminate the limitations on the universality of Wigner’s theory.

In the non-Ohmic decay problem that we have considered a universal generalized Wigner
time scale has emerged. It is not this time scale but rather the functional form of the decay
that reflects the non-universality. We find that for ‘non-Ohmic chaos’ (WM case) the survival
probability becomes a stretched exponential beyond the Wigner time scale, which is both
surprising and interesting. This is contrasted with the ‘integrable’ power-law decay that takes
over in the long time limit (FM case), and obviously very different from the Ohmic exponential
result. Only the standard case of flat (Ohmic) bandprofile is fully universal.

It is worth mentioning that in a bosonic second quantized language the decay of the
probability can be re-interpreted as the decay of the site occupation n̂. If the interaction
between the bosons is neglected this reduction is exact and merely requires an appropriate
dictionary. In the latter context each level becomes a bosonic site which is formally like an
harmonic oscillator, and hence the initially empty continuum is regarded as a zero temperature
bath. Consequently, the decay problem is formally re-interpreted as a quantum dissipation
problem with an Ohmic (s = 1) or non-Ohmic (s �= 1) bath. The time scale t0 is associated
with the damped motion of the generalized coordinate n̂. Optionally, P(t) could be related
to dephasing, and in this case t0 is reinterpreted as the coherence time, as in Landau’s Fermi
liquid theory.
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